Deformation twinning in a nanocrystalline hcp Mg alloy
نویسندگان
چکیده
منابع مشابه
Deformation twinning in nanocrystalline materials
Nanocrystalline (nc) materials can be defined as solids with grain sizes in the range of 1–100 nm. Contrary to coarse-grained metals, which become more difficult to twin with decreasing grain size, nanocrystalline face-centered-cubic (fcc) metals become easier to twin with decreasing grain size, reaching a maximum twinning probability, and then become more difficult to twin when the grain size ...
متن کاملDeformation twinning in nanocrystalline aluminum.
We report transmission electron microscope observations that provide evidence of deformation twinning in plastically deformed nanocrystalline aluminum. The presence of these twins is directly related to the nanocrystalline structure, because they are not observed in coarse-grained pure aluminum. We propose a dislocation-based model to explain the preference for deformation twins and stacking fa...
متن کاملDeformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy
The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important ...
متن کاملDeformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy
Deformation twinning evolution from a single crystal is conducted by molecular dynamics simulations, to elucidate a twinned face-centered-cubic alloy in an experiment with hardness up to 100 times as that of single crystals, and with ductility simultaneously. Critical twinning stress of cadmium zinc telluride (CdZnTe or CZT) calculated is 1.38 GPa. All the twin boundaries are along the (11-1) o...
متن کاملMicrostructure Modelling of Hot Deformation of Al-1%Mg Alloy
This study presents the application of the finite element method and intelligent systems techniques to the prediction of microstructural mapping for aluminium alloys. Here, the material within each finite element is defined using a hybrid model. The hybrid model is based on neuro-fuzzy and physically based components and it has been combined with the finite element technique. The model simulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scripta Materialia
سال: 2011
ISSN: 1359-6462
DOI: 10.1016/j.scriptamat.2010.10.024